COMPLEX CONVEXITY AND VECTOR-VALUED LITTLEWOOD–PALEY INEQUALITIES
نویسندگان
چکیده
منابع مشابه
Complex convexity and vector-valued Littlewood–Paley inequalities
Let 2 ≤ p < ∞ and let X be a complex Banach space. It is shown that X is p-uniformly PL-convex if and only if there exists λ > 0 such that ‖f‖Hp(X) ≥ ( ‖f(0)‖p + λ ∫ D (1− |z|2)p−1‖f ′(z)‖pdA(z) )1/p , for all f ∈ Hp(X). Applications to embeddings between vector-valued BMOA spaces defined via Poisson integral or Carleson measures are provided. AMS Subject Class. 46B20,46L52
متن کاملVector–valued Hardy Inequalities and B–convexity
Inequalities of the form ∑∞ k=0 |f̂(mk)| k+1 ≤ C ‖f‖1 for all f ∈ H1, where {mk} are special subsequences of natural numbers, are investigated in the vector-valued setting. It is proved that Hardy’s inequality and the generalized Hardy inequality are equivalent for vector valued Hardy spaces defined in terms of atoms and that they actually characterize B-convexity. It is also shown that for 1 < ...
متن کاملExtremal Vector Valued Inequalities for Hankel Transforms
The disc multiplier may be seen as a vector valued operator when we consider its projections in terms of the spherical harmonics. In this form, it represents a vector valued Hankel transform. We know that, for radial functions, it is bounded on the spaces Lplq (r n−1 dr) when 2n n+1 < p, q < 2n n−1 . Here we prove that there exist weak-type estimates for this operator for the extremal exponents...
متن کامل(m1,m2)-Convexity and Some New Hermite-Hadamard Type Inequalities
In this manuscript, a new class of extended (m1,m2)-convex and concave functions is introduced. After some properties of (m1,m2)-convex functions have been given, the inequalities obtained with Hölder and Hölder-İşcan and power-mean and improwed power-mean integral inequalities have been compared and it has been shown that the inequality with Hölder-İşcan inequality gives a better approach than...
متن کاملVariational Inequalities for Set-Valued Vector Fields on Riemannian Manifolds: Convexity of the Solution Set and the Proximal Point Algorithm
We consider variational inequality problems for set-valued vector fields on general Riemannian manifolds. The existence results of the solution, convexity of the solution set, and the convergence property of the proximal point algorithm for the variational inequality problems for set-valued mappings on Riemannian manifolds are established. Applications to convex optimization problems on Riemann...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the London Mathematical Society
سال: 2003
ISSN: 0024-6093,1469-2120
DOI: 10.1112/s0024609303002479